

ASSESSMENT and QUALIFICATIONS ALLIANCE

General Certificate of Education

Mathematics 6360

MS04 Statistics 4

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the releval, questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

MS04 - AQA GCE Mark Scheme 2007 Minalhs Cloud.com

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
Α	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks an	d is for method	l and accuracy		
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

				Mun Ser	A
				MS04 - AQA GCE Mark Scheme 2007	
				MS04 - AQA GCE Mark Scheme 2007 . My hand the scheme 2007 . The scheme s	
IS04 Q	Solution	Marks	Total	Comments	20.
	$H_0: \sigma = 10$ $H_1: \sigma \neq 10$	B1	10tai	Both	71
	$\sum (x - \overline{x})^2 = 254$	M1A1		Or $s^2 = 28.2$; B1 for 25.4	
	Under H_0 , $\sigma^2 = 100$				
	Hence $\chi^2_{\text{calc}} = \frac{254}{100} = 2.54$	M1A1		$\frac{9 \times 28.2}{100} = 2.54$	
ļ	v = 9	B1	1		
	$\chi^{2}_{\rm crit}$ (2.7, 19.0)	B1 B1		Both required	
I	Reject H ₀		1		
ļ	Evidence that headmaster's belief is	A1√	8		
I	incorrect				
	Total $P(w) = \frac{1}{p}$		8	+	
2(a)	$E(X) = \frac{1}{p} \qquad Var(X) = \frac{1-p}{p^2}$	B1		Both	
ļ	$\frac{1}{p} = \frac{4(1-p)}{p^2}$	M1			
I	$\Rightarrow p = 4 - 4p$ $\Rightarrow 5p = 4$		1		
ļ	\Rightarrow 5 $p = 4$		1		
ļ	$\Rightarrow p = 0.8$	A1	3		
(b)	$P(X > 4 X > 2) = \frac{P(X > 4)}{P(X > 2)}$	M1		Use of	
	$=\frac{0.2^4}{0.2^2}$	m1		Or $\frac{1 - 0.8(1 + 0.2 + 0.2^2 + 0.2^3)}{1 - 0.8(1 + 0.2)}$	
ļ	$= 0.2^2$	A1√	1	√ on (a)	
I	= 0.04	A1	4	САО	
1	Total		7		

				MS04 - AQA GCE Mark Sch	ieme 2007
24 (cont)					heme 2007 , mainsclou ents 2-sample <i>t</i> -test
04 (cont) Q	Solution	Marks	Total	Comme	ents
3 (a)	Differences				2-sample <i>t</i> -test
	22, 16, -7, 17, 30, -21, -2, 1, 6, -9	M1	1	Attempt at differences	
	$\overline{d} = \frac{53}{10} = 5.3$	ם 1			D1
	$a = \frac{1}{10} = 5.5$	B1	1		B1
	$H_0: \mu_d = 0$ $H_1: \mu_d > 0$	B1,B1	1	\overline{d} for μ_d B1	B1, B1
	$\Pi_0 \cdot \mu_d \cup \Pi_1 \cdot \mu_d = \cup$	ים,ים	1	$u \log \mu_d$ bi	D1, D1
	$t_{cale} = \frac{5.3 - 0}{5.3 - 0}$	B1		s or σ	
	$t_{\text{calc}} = \frac{5.3 - 0}{\left(\frac{15.85}{\sqrt{10}}\right)}$	M1	1	Or $\left(\frac{15.03}{\sqrt{9}}\right)$	
	$(\sqrt{10})$ =1.06	A1	1	(٧)	
			1		
	v = 9	B1 B1	1	PI	v = 18 B1
	$t_{\rm crit} = 1.833$	B1			$t_{\rm crit} = 1.734 {\rm B1}$
	Retain H_0 - No evidence that mean mark		10		
	is less on written examination	A1√	10	OE	5/10 max
(b)	Random sample	E1	1		E1
	Differences are normally distributed Total	E1	2 12	Differences required	E0 1/2 max
4(a)	∞ م	M1		Use of	
	• 0		1		
	$= \left[-x \mathrm{e}^{-\lambda x} \right]_0^\infty + \int_0^\infty \mathrm{e}^{-\lambda x} \mathrm{d}x$	A1		Integrate by parts	
	$= \left[\frac{-e^{-\lambda x}}{\lambda}\right]_{0}^{\infty}$	A1	1	Correctly	
			1	Concerny	
	$=\frac{1}{\lambda}$	A1	4	AG	
	λ				
(b)(i)	$\frac{1}{2} = \frac{1}{2} = 0.016$	M1A1	2		
(*)(*)	$\frac{1}{a} = \frac{1}{62.5} = 0.016$	17111-	-		
		N#1 A 1		$\int_{-\infty}^{\infty} \int_{-0.016a}^{\infty} 0.016a^{-0.016t} dt$	
(ii)	$\mathbf{F}(t) = \mathbf{I} - \mathbf{e}$	M1A1	1	Or $\int_{80}^{\infty} 0.016e^{-0.016t} dt$	
	$P(T > 80) = e^{-0.016 \times 80}$	M1	1	Award M1A1 for comp	olement
	= 0.278	A1	4		
(iii)					
(iii)	Either $e^{-0.016 \times 100} \div e^{-0.016 \times 80}$	M1A1	1		
	= 0.726	Al	3		
	or e ^{-0.016×20}	(M2)	1		
I	e = 0.726	(M2) (A1)			

MS04 - AQA GCE Mark Scheme 2007

1sths

MS04 (cont)			DUO.
Q	Solution	Marks	Total	Comments Com
5(a)	Mean $=\frac{\sum fx}{\sum f} = \frac{270}{100} = 2.7$	M1A1	2	AG
(b)	O E 7 6.72 15 18.15 27 24.50 25 22.05 11 14.88 10 8.04	M1 M1 M1		Probabilities $\times 100$ ≥ 7 Frequency = 2.04
	$\begin{array}{cccc} 10 & 8.04 \\ 3 & 3.62 \\ 2 & 2.04 \end{array}$	M1		Combine classes
	$H_0: X \sim Po$	B1		
	$\chi^2_{\text{calc}} = \frac{0.28^2}{6.72} + \frac{3.15^2}{18.15} + \frac{2.50^2}{24.50} + \frac{2.95^2}{22.05}$	M1		
	$+\frac{3.88^2}{14.88}+\frac{1.96^2}{8.04}+\frac{0.66^2}{5.66}$	A1		$\geq 4 \text{ terms correct} \\ (0.0117 + 0.5467 + 0.2551 + 0.3947 + 1.012 + 0.4778 + 0.0770) \\$
	= 2.77	A1		AWFW (2.75, 2.85)
	v = 7 - 2 = 5	B1		
	$\chi^2_{\rm crit} = 9.236$	B1√		$ \text{ on } \nu = 6 \text{ only } \left(\chi^2_{\text{crit}} = 10.645 \right) $
	$\chi^2_{\rm calc} \ll \chi^2_{\rm crit}$			
	$\Rightarrow \text{Accept } X \sim \text{Po}$ ie no evidence that it is not a Poisson distribution	A 1√	11	\checkmark on χ^2_{calc} and upper $\chi^2_{5 \text{ or } 6}$
	Total		13	

$\begin{vmatrix} = aE(X_1) + bE(X_2) + cE(X_3) \\ \Rightarrow \mu = a\mu + b\mu + c\mu \\ \Rightarrow a + b + c = 1 \end{vmatrix}$ $\begin{vmatrix} M1 \\ M1 \\ A1 \end{vmatrix}$ $\begin{vmatrix} M1 \\ M1 \\ A1 \end{vmatrix}$ $\begin{vmatrix} M1 \\ A1 \end{vmatrix}$ $\begin{vmatrix} AG \\ AG $					
$\begin{vmatrix} = aE(X_{1}) + bE(X_{2}) + cE(X_{3}) \\ \Rightarrow \mu = a\mu + b\mu + c\mu \\ \Rightarrow a + b + c = 1 \end{vmatrix}$ M1 M1 A1 A Can be implied by next line M1 A1 A G (b)(i) Var(T_{1}) = $\frac{1}{9}Var(X_{1}) + \frac{1}{4}Var(X_{2}) + \frac{1}{36}Var(X_{3}) \\ = \frac{7\sigma^{2}}{18}$ N1 Either T_{1} or T_{2} Accept any correct unreduced 0.389 σ^{2} Var(T_{2}) = $\frac{4}{9}Var(X_{1}) + \frac{9}{16}Var(X_{2}) + \frac{25}{144}Var(X_{3}) \\ = \frac{85\sigma^{2}}{72}$ A1	(cont) 2	Solution	Marks	Total	MS04 - AQA GCE Mark Scheme 2007 . Mainson Comments
$\begin{vmatrix} \Rightarrow \mu = a\mu + b\mu + c\mu \\ \Rightarrow a + b + c = 1 \end{vmatrix}$ M1 A1 A3 AG $(b)(i) Var(T_1) = \\ \frac{1}{9}Var(X_1) + \frac{1}{4}Var(X_2) + \frac{1}{36}Var(X_3) \\ = \frac{7\sigma^2}{18}$ A1 $Var(T_2) = \\ \frac{4}{9}Var(X_1) + \frac{9}{16}Var(X_2) + \frac{25}{144}Var(X_3) \\ = \frac{85\sigma^2}{72}$ A1 A1 A1 A1 A1 A1 A1 A1 A2 A3 A4 A1 A1 A1 A1 A1 A1 A2 A3 A3 A4 A1 A1 A1 A1 A1 A1 A1 A1 A1 A2 A3 A4 A1 A3 A4 A1	6(a)	$E(aX_1+bX_2+cX_3)$		 I	
(b)(i) $ \begin{array}{c c} \operatorname{Var}(T_1) = & \\ \frac{1}{9}\operatorname{Var}(X_1) + \frac{1}{4}\operatorname{Var}(X_2) + \frac{1}{36}\operatorname{Var}(X_3) & \text{M1} \\ = \frac{7\sigma^2}{18} & \text{A1} \\ \operatorname{Var}(T_2) = & \\ \frac{4}{9}\operatorname{Var}(X_1) + \frac{9}{16}\operatorname{Var}(X_2) + \frac{25}{144}\operatorname{Var}(X_3) \\ = \frac{85\sigma^2}{72} & \text{A1} \\ \operatorname{Hence} \operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)} & \text{M1} \end{array} $			M1	I	Can be implied by next line
(b)(i) $ \begin{array}{c c} \operatorname{Var}(T_1) = & \\ \frac{1}{9}\operatorname{Var}(X_1) + \frac{1}{4}\operatorname{Var}(X_2) + \frac{1}{36}\operatorname{Var}(X_3) & \text{M1} \\ = \frac{7\sigma^2}{18} & \text{A1} \\ \operatorname{Var}(T_2) = & \\ \frac{4}{9}\operatorname{Var}(X_1) + \frac{9}{16}\operatorname{Var}(X_2) + \frac{25}{144}\operatorname{Var}(X_3) \\ = \frac{85\sigma^2}{72} & \text{A1} \\ \operatorname{Hence} \operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)} & \text{M1} \end{array} $		$\Rightarrow \mu = a\mu + b\mu + c\mu$		I	
$\begin{vmatrix} \frac{1}{9} \operatorname{Var}(X_1) + \frac{1}{4} \operatorname{Var}(X_2) + \frac{1}{36} \operatorname{Var}(X_3) & \text{M1} \\ = \frac{7\sigma^2}{18} & \text{A1} \\ \operatorname{Var}(T_2) = \\ \frac{4}{9} \operatorname{Var}(X_1) + \frac{9}{16} \operatorname{Var}(X_2) + \frac{25}{144} \operatorname{Var}(X_3) \\ = \frac{85\sigma^2}{72} & \text{A1} \\ \operatorname{Hence} \operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)} & \text{M1} \\ \end{vmatrix}$ Either T_1 or T_2 Accept any correct unreduced $0.389 \sigma^2$ Accept any correct unreduced $0.389 \sigma^2$ $= \frac{85\sigma^2}{72} & \text{A1} \\ \operatorname{Hence} \operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)} & \text{M1} \\ \end{cases}$		$\Rightarrow a+b+c=1$	A1	3	AG
$=\frac{7\sigma^{2}}{18}$ $Var(T_{2}) =$ $\frac{4}{9}Var(X_{1}) + \frac{9}{16}Var(X_{2}) + \frac{25}{144}Var(X_{3})$ $=\frac{85\sigma^{2}}{72}$ $Hence RE(T_{1} wrt T_{2}) = \frac{Var(T_{2})}{Var(T_{1})}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	(b)(i)	$\operatorname{Var}(T_1) =$		I	
$=\frac{1}{18}$ $Var(T_2) =$ $\frac{4}{9}Var(X_1) + \frac{9}{16}Var(X_2) + \frac{25}{144}Var(X_3)$ $=\frac{85\sigma^2}{72}$ $Hence RE(T_1 wrt T_2) = \frac{Var(T_2)}{Var(T_1)}$ $M1$ $A1$ $O.389 \sigma^2$ $O.380 \sigma^2$ $O.3$		$\frac{1}{9}\operatorname{Var}(X_1) + \frac{1}{4}\operatorname{Var}(X_2) + \frac{1}{36}\operatorname{Var}(X_3)$	M1	I	Either T_1 or T_2
$\frac{4}{9} \operatorname{Var}(X_1) + \frac{9}{16} \operatorname{Var}(X_2) + \frac{25}{144} \operatorname{Var}(X_3)$ $= \frac{85\sigma^2}{72}$ Hence $\operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)}$ A1 Use of		$=\frac{7\sigma^2}{18}$	A1	I	Accept any correct unreduced fraction or $0.389 \sigma^2$
$= \frac{85\sigma^2}{72}$ Hence $\operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)}$ A1 Use of		$\operatorname{Var}(T_2) =$		I	
Hence $\operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)}$ M1 Use of		$\frac{4}{9}$ Var (X_1) + $\frac{9}{16}$ Var (X_2) + $\frac{25}{144}$ Var (X_3)		I	
		$=\frac{85\sigma^2}{72}$	A1	I	Any equivalent fraction or $1.18 \sigma^2$
$=\frac{85}{72} \times \frac{18}{7} = \frac{85}{28} \qquad A1\checkmark \qquad 5 \qquad AWFW [3.03, 3.04]$		Hence $\operatorname{RE}(T_1 \operatorname{wrt} T_2) = \frac{\operatorname{Var}(T_2)}{\operatorname{Var}(T_1)}$	M1	I	Use of
		$=\frac{85}{72}\times\frac{18}{7}=\frac{85}{28}$	A1√	5	AWFW [3.03,3.04]
(ii) Since $\frac{85}{28} > 1$, M1	(ii)	Since $\frac{85}{28} > 1$,	M1	I	
20		20	A 1	2	SC $0.39 < 1.18 \Rightarrow T_1$ more efficient B1 \checkmark

MS04 - AQA GCE Mark Scheme 2007

Taths

Q	Solution	Marks	Total	Comments
7(a)	$\sigma_X^2 = \frac{761.2}{11} = 69.2$	M1		Either
	$\sigma_X^2 = \frac{761.2}{11} = 69.2$ $\sigma_Y^2 = \frac{386.1}{9} = 42.9$	A1	2	Both correct
(b)(i)	$\frac{69.2}{42.9} = 1.613$	M1A1		
	$v_1 = 12 - 1 = 11$ $v_2 = 10 - 1 = 9$	B1		Both
	$F_{11,9} = 3.102$ $F_{9,11} = 2.896$	B1,B1		
	$\frac{1}{3.102} \le \frac{\left(\frac{{\sigma_X}^2}{{\sigma_Y}^2}\right)}{1.613} \le 2.896$	M1 A1√		
	$\therefore 0.520 \le \frac{\sigma_X^2}{\sigma_Y^2} \le 4.67$	A1	8	B1 for limit without full working max 2/5
(ii)	Reject suggestion Since 1∈ CI	B1√ E1√	2	
	Total		12	
	TOTAL	1	75	